
We all do arithmetic. We do it in the supermarket when providing for our families. We 
do it on the highway when comparing our speed with the posted limits (sometimes). 
We do it in the restaurant when determining how much of a tip to leave on the table, or 
whether we’ll have to wash dishes to pay for the meal. Arithmetic, and mathematics as a 
whole, is always around us from the most mundane tasks to the most embarrassing and 
profound situations. 

With some minor exceptions we perform arithmetic operations in base ten. But is 
base ten really the best way to do arithmetic? Are calculations easier to perform in some 
other base, say twelve or sixteen? Let us take a brief look at some of the inherent advan-
tages and disadvantages of the use of alternate number bases in arithmetic, starting with 
our tried and true friend, base ten. 

Th e primary advantage that base ten gives us is that we’re accustomed to it. Th e most 
popular explanation is that we have ten fi ngers on our hands. We are able to match our 
fi ngers to up to ten of some other object. Counting the number of times we can do this 
before we run out of whatever we were counting allows us to use numbers greater than 
ten. Some cultures, for similar reasons, have used number systems of fi ve and twenty 
(the latt er by calling the toes into play).1 Th ere are some disadvantages that are im-
mediately apparent in these bases. Base fi ve, for instance, is a fairly small base, which 
leads to long strings of numerals even for small values. (Compare one hand and three 
fi ngers (13fi ve) to eight fi ngers (8ten) Base twenty has the problem that very few of us can 
bend our toes independently of the others. Peoples in colder climes may have to remove 
shoes of moccasins to do any such counting. Whatever the reason, our familiar decimal 
system predominates. 

Th ere are some notable exceptions. Ancient Sumerians and Babylonians used a sex-
agesimal (base sixty) system of enumeration in connection with the place-value system. 
Each sexagesimal place, however, was constructed of cuneiform symbols giving the num-
ber of tens and units for that place.2 Some Northern European societies had a quantity 
known as a “great hundred” made up of ten dozens (decimal 120.), refl ecting the rudi-
ments of a duodecimal (base twelve) counting system.3 Th e Romans, even though they 
used base ten for their integer counting, had a system of duodecimal fractions. It is be-
lieved they chose this because of easy divisibility in so many diff erent ways.4

Despite our use of the decimal system for many millennia, there is something that 
requires us to consider non-decimal enumerating: the electronic digital computer. 

Computers, at their lowest levels of operation, know only whether a current is fl owing 
through a transistor or not. Th is off /on choice leads us to the binary (base two) system 
of numeration. But while computers have litt le problem working in binary, for humans 
it can be a bit cumbersome. For example: 

842ten = 1101001010two 

As you can see, relatively small numbers in decimal produce some real monster-sized 
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binary numbers. To cope, we have developed some convenient shortcuts. By convert-
ing binary numbers into octal (base eight) or hexadecimal (base sixteen) numbers, we 
make binary numbers more manageable for humans. Th is is actually quite easy. Taking 
our example from above, 

1101001010two

we divide the number up three places at a time from the right, 

1 101 001 010
and then convert each group of three into single octal digits by fi nding the values that 
correspond to each place: 

1 101 001 010
1 5 1 2

Th is gives us:  842ten = 1512eight

Th e process for converting binary into hexadecimal is similar; start by dividing the 
number into four digit groups: 

11 0100 1010 

and insert the appropriate values: 

11 0100 1010
3 4 10

Th is leads to a bit of a problem. How do we squeeze that ten into a single digit? Th e 
current usage in the computer industry is to represent the values ten through fi ft een by 
the lett ers “A” through “F”: “A” equals ten, “B” equals eleven, etc. Our conversion from 
above then becomes: 

11 0100 1010
3 4 A

giving us:

842ten = 34Asixteen

In some bases, identifying prime numbers greater than 2 and perfect squares (or at 
least ruling them out) is fairly easy, in others it is more diffi  cult. A good test is to check 
the fi nal digit in the number. For example, in base ten we know there are no prime num-
bers ending with the numeral 4 and there are no perfect squares that end with a 7. How 
many of the available numerals in a given base can terminate a prime number? How 
many will terminate a perfect square? It is also useful to compare that number with the 
total available. If, for instance, a prime number can end with any digit at all, that test 
becomes useless.

We have so far come across several diff erent numbering systems, which we can cat-
egorize as follows:
 1. Th e “Finger” Bases: fi ve, ten, twenty;
 2. Th e Binary Bases: two, eight, sixteen; 
 3. Other Bases: twelve and sixty.
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Base Prime Number End Digits % Perfect Square End Digits %

2 1 100 0, 1 100
5 1, 2, 3, 4 200 0, 1, 4 60
8 1, 3, 5, 7 100 0, 1, 4 38

10 1, 3, 7, 9 80 0, 1, 4, 5, 6, 9 60
12 1, 5, 7, 11 67 0, 1, 4, 9 33
16 1, 3, 5, 7, 9, 11, 13, 15 100 0, 1, 4, 9 25
20 1, 3, 7, 9, 11, 13, 17, 19 80 0, 1, 4, 5, 9, 16 30
60 1, 7, 11, 13, 17, 19, 23, 29, 

31, 37, 41, 43, 47, 49, 53, 59 53 0, 1, 4, 9, 16, 21, 24, 25, 36, 
40, 45, 49 20

Table 2: Prime Number End Digits (Totatives) and Perfect Square End Digits.

We have also seen that some bases are good for humans while others are good only 
for computers. Is there some way we can quantify the usefulness of these systems (for 
humans) so that we can compare them? Which of these bases is really the best for count-
ing and arithmetic for humans? 

One way of comparing number bases is to compare some of their divisibility indica-
tors. For example, a divisibility indicator in base ten would be the fact that all numbers 
divisible by fi ve end in a zero or a fi ve digit. Easy rules like this are one way we make 
counting and arithmetic easy on ourselves. George Terry, in his book Duodecimal Arith-
metic, suggests tests to help identify prime numbers and perfect squares.5
Divisibility Rules. 

Let us take a quick look at the divisibility rules fi rst. We will concentrate on the “easy” 
rules (hard rules aren’t that valuable to humans). We’ll restrict ourselves to numbers 
less than the base number itself (except for base two). Table 1 on page 19; shows when 
a number in the given base is divisible by the digit in the left  hand column.
End Digits of Prime and Square Numbers.

Note: the columns marked “%” in Table 2 refer to the percentage of digits that appear 
against the given base. Th e percentages given aft er the prime digit column refer to the 
number of odd digits that appear. Base 5 reads 200% in this column, as numbers ending 
in even digits can also be prime. 
Regularity of Digits.

Table 3 on page 1b; lists “regular numbers” along with a “regularity index” for each 
base.  A regular number is a number, in base sixty, the reciprocal of which has a fi nite 
number of places. We can extend this concept to any other base and say a regular num-
ber has a terminating fractional part in that base. For example, ⅓ is a terminating frac-
tion in base twelve (0.4twelve) but it is not a terminating fraction in decimal (0.333…ten). 
So, three is a regular number in base twelve but not in base ten. Th is is a good alternative 
to counting the divisibility rules presented in Table 1. If we look at every single-digit 
number greater then 1 in each base we can see what portion of them are regular. We call 
that portion the “regularity index” and express it as a percentage. 

Table 1: Rules of Divisibility for Selected Bases
Base 2:  
 2: A number is even if it ends in 0, odd if it ends in 1
Base 5:  
 2: Any number whose digits add to a multiple of 2
 4: Any number whose digits add to a multiple of 4
Base 8:  
 2: Any number ending in an even digit
 4: Any number ending in 0 or 4
 7: Any number whose digits add to a multiple of 7
Base 10:  
 2: Any number ending in an even digit
 3: Any number whose digits add to a multiple of 3
 5: Any number ending in 0 or 5
 6: Any even number whose digits add to a multiple of 3
 9: Any number whose digits add to a multiple of 9
Base 12:  
 2: Any number ending in an even units place
 3: Any number ending in 0, 3, 6, 9
 4: Any number ending in 0, 4, 8
 6: Any number ending in 0, 6
 11: Any number whose digits add to a multiple of 11
Base 16:  
 2: Any number ending in an even units place
 3: Any number whose digits add to a multiple of 3
 4: Any number ending in 0, 4, 8, 12
 5: Any number whose digits add to a multiple of 5
 6: Any even number whose digits add to a multiple of 6
 8: Any number ending in 0 or 8
 10: Any even number whose digits add to a multiple of 5
 15: Any number whose digits add to a multiple of 15
Base 20:  
 2: Any number ending in an even units place
 4: Any number ending in 0, 4, 8, 12, 16
 5: Any number ending in 0, 5, 10, 15
 10: Any number ending in 0, 10
 19: Any number whose digits add to a multiple of 19
Base 60:  
 2: Any number ending in an even units place 
 3: Any number whose units place is a multiple of 3
 4: Any number whose units place is a multiple of 4
 5: Any number whose units place is a multiple of 5
 6: Any number whose units place is a multiple of 6
 10: Any number ending in 0, 10, 20, 30, 40, 50
 12: Any number ending in 0, 12, 24, 36, 48
 15: Any number ending in 0, 15, 30, 45
 20: Any number ending in 0, 20, 40
 30: Any number ending in 0, 30
 59: Any number whose digits add to a multiple of 59
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sixty seem to have fared about equally well (even with base sixty’s enormous multiplica-
tion table). It would seem that base twelve ranked so much higher because it combines 
good divisibility patt erns (noted by the regularity index) with a fairly small set of opera-
tion tables. 

On the other hand, note bases two and fi ve bringing up the rear. For base fi ve, there 
are no terminating decimal fractions. Also, as an odd-numbered base, we have more dif-
fi culty fi nding odd and even numbers in base fi ve. A base fi ve prime number may end in 
any digit. For example: 31fi ve has an odd last digit, but is equal to 16ten, an even number. 
Base two fails mainly because it is so cumbersome to work with, and that it’s more dif-
fi cult to guess whether a number might be prime or square (shown by high values of P 
and S). Th e regularity index of base two, zero, may be merely a problem in defi ning the 
regularity index. Th ere are simply no integers between 1 and 1. Arbitrarily sett ing the 
regularity index to 50% gives a fi nal index value of .173. Th is is still quite low, but seems 
more appropriate. 

Of the bases we haven’t considered, does anything else compare to base 12? Base 6 
does with an index of .504. Th ese are the only two bases that come in above .500 and, in 
fact, the only two coming in above .400. (Base 4 came in third at .347.) Th e top ten are:

 12, 6, 4, 24, 30, 18, 60, 10, 36, 8.

Should we convert to base twelve? Re-educating several billion people seems like a 
daunting task, so we might begin by teaching duodecimals in parallel with decimal math 
to children just entering school. In my fi ft h year at elementary school, I volunteered to 
teach octal arithmetic to the class. My classmates reacted positively, having fun playing 
with slightly altered arithmetic rules and viewing the world through the eyes of an eight-
fi ngered creature. Today I carry out counting tasks in parallel with decimal and dozenal, 
which provides me a reality check of sorts. Giving people another lens thorough which 
to see the world will do no harm and may well be of great benefi t. •••

Notes

1 Eves, Howard; An Introduction to the History of Mathematics, fi ft h edition, Philadel-
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2 Ibid, p. 10 

3 Menninger, Karl; Number Words and Number Symbols, English translation, Cambridge, 
Massachusett s: Th e MIT Press, 1969; pp. 154ff . 

4 Ibid, pp. 158ff . 

5 Terry, George S.; Duodecimal Arithmetic, London: Longmans Green and Co., 1938

Editor’s note: Th e text of this article can be retrieved at htt p://www.ubergeek.org/~chris/
random/base12.html •••

Comparing the Bases.
We have quite a lot of data to digest. Let’s look at how we might combine our indi-

ces and percentages into something we can use for comparisons. Th is will be somewhat 
subjective since we’re really trying to quantify how a human will feel about each number 
base while counting and doing arithmetic. 

We should give a positive consideration to the regularity index, since we’d like to avoid 
infi nite fractions. We’ll give a smaller positive consideration to the fact that a larger base 
yields a more compact notation; the length of a numeral gets shorter or remains un-
changed as the log of its base increases. (We use the natural logarithm to avoid showing 
preference to any integer base.)

Negative consideration should be given for the number of diff erent digits that are 
found at the ends of prime and square numbers (fewer is bett er). And we’ll consider the 
size of the multiplication table. A bigger base has a larger table to learn and we should 
think of the school kids. Combining all these infl uences gives us the following relation:

I = R × ln b
P × S × b

where: 
 b is the base in question
 R is the regularity index
 P is the percentage of odd digits found at the 
ends of prime numbers
 S is the percentage of all digits found at the ends 
of perfect squares
 and the percentages P, R and S are expressed as 
fractionals.

Th is yields the data shown in Table 4.
Th is table indicates that base twelve is, by far, a much 

more logical base to do arithmetic in. Bases eight, ten and 

Base b Index I
2 .000
5 .000
8 .231

10 .240
12 .559
16 .149
20 .208
60 .265

Table 4: Compare the bases.
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Base Regular Numbers Regularity 
Index (%)

2 [none] 0
5 [none] 0
8 2, 4 33

10 2, 4, 5, 8 50
12 2, 3, 4, 6, 8, 9 60
16 2, 4, 8 21
20 2, 4, 5, 8, 10, 16 33
60 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 

24, 25, 27, 30, 32, 36, 40, 45, 48, 50, 54 41
Table 3: Regular Numbers for Selected Bases. Editor's Note: this table includes regular 
numbers by the Author's defi nition which are less than the base given in the left most column. Such 
positive integers lesser than the base would thus be single digits in that base.


